1.

Therefore, Senthil's house number is 35.Example 2.39 The sum of first n, 2n and 3n terms of an A.P. are SS, and S, respectively,Prove that S = 315,-5).om um of first man and 3n terms of an A.P. respectively then

Answer»

Ram is 10 year more than twice the age of Rahim . Ram age is 56 year (take rahim age as z)

Answer:

3(S_2-S_1)=S_33(S2​−S1​)=S3​

Step-by-step explanation:

It is given that the sum of first n ,2n and 3n terms of AP be s1, s2 and s3.

To prove:S_3=3(S_2-S_1)S3​=3(S2​−S1​)

The sum of first n terms isdefined as

S_1=S_n=\frac{n}{2}[2a+(n-1)d]S1​=Sn​=2n​[2a+(n−1)d]

S_2=S_{2n}=\frac{2n}{2}[2a+(2n-1)d]S2​=S2n​=22n​[2a+(2n−1)d]

S_3=S_{3n}=\frac{3n}{2}[2a+(3n-1)d]S3​=S3n​=23n​[2a+(3n−1)d]

Taking right hand side of the given equation.

3(S_2-S_1)=3(\frac{2n}{2}[2a+(2n-1)d]-\frac{n}{2}[2a+(n-1)d])3(S2​−S1​)=23n​(2[2a+2dn−d]−[2a+dn−d])

3(S_2-S_1)=\frac{3n}{2}(4a+4dn-2d-2a-dn+d)3(S2​−S1​)=23n​(4a+4dn−2d−2a−dn+d)

3(S_2-S_1)=\frac{3n}{2}(2a+3dn-d)3(S2​−S1​)=23n​(2a+3dn−d)

3(S_2-S_1)=\frac{3n}{2}(2a+(3n-1)d)3(S2​−S1​)=23n​(2a+(3n−1)d)

3(S_2-S_1)=S_{3n}3(S2​−S1​)=S3n​

3(S_2-S_1)=S_33(S2​−S1​)=S3​

L.H.S=R.H.S.

Hence prove.



Discussion

No Comment Found