1.

There are two vector `vec(A)=3hat(i)+hat(j)` and `vec(B)=hat(j)+2hat(k)`. For these two vectors- (i) Find the component of `vec(A)` along `vec(B)` and perpendicular to `vec(B)` in vector form. (ii) If `vec(A)` & `vec(B)` are the adjacent sides of parallelogram then find the magnitude of its area. (iii) Find a unit vector which is perpendicular to both `vec(A)` & `vec(B)`.

Answer» Correct Answer - (i) `1/5 (hat(j)+2hat(k)), 3hat(i)+4/5hat(j)-2/5hat(k)` (ii) 7 units (iii) `2/7hat(i)-6/7hat(j)+3/7 hat(k)`
(i) component of `vec(A)` along `vec(B)=((vec(A).vec(B))/B)hat(B)`
`=((vec(A).vec(B))/B)vec(B)/B=[((3hat(i)+hat(j)).(hat(j)+2hat(k)))/sqrt(5)]((hat(j)+2hat(k)))/sqrt(5)=1/5 (hat(j)+2hat(k))`
Component of `vec(A) bot vec(B)`
`=vec(A)-[(vec(A).vec(B))/vec(B)]hat(B)=3hat(i)+hat(j)-[1/5(hat(j)+2hat(k))]`
(ii) Area of the parallelogram
`=|vec(A)xxvec(B)|=|(hati,hatj,hatk) ,(3,1,0),(0,1,2)|=|2hati-6hatj+3hatk|`
`=sqrt(2^(2)+(-6)^(2)+3^(2))=7` units
(iii) Unit vector perpendicular to both `vec(A)` & `vec(B)`
`hat(n)=(vec(A)xxvec(B))/(|vec(A)xxvec(B)|)=(2hati-6hatj+3hatk)/7=2/7hat(i)-6/7 hat(j)+3/7 hat(k)`


Discussion

No Comment Found

Related InterviewSolutions