1.

The vertex of the parabola `x^2 + y^2 - 2xy - 4x - 4y + 4 = 0` is atA. (1, 1)B. (-1, -1)C. `(1/2,1/2)`D. none of these

Answer» Correct Answer - C
we have,
`x^(2)+y^(2)-2xy-4x-4y+4=0`
`rArr" "(x-y)^(2)=4(x+y-1)`
`rArr" "{(x-y)/(sqrt(1^(2)+1^(2)))}^(2)=2sqrt2{(x+y-1)/(sqrt(1^(2)+1^(2)))}`
`rArr" "(x-y)/(sqrt(1^(2)+1^(2)))=" Y and "(x+y-1)/(sqrt(1^(2)+1^(2)))=X`
Then, equation (i) reduces to `y^(2)=2sqrt2X`.
The coordinates of the vertex of this parabola are (X = 0, Y = 0). So, the coordinates of the vertex of the given parabola are given by
`(x+y-1)/(sqrt(1^(2)+1^(2)))=" 0 and "(x-y)/(sqrt(1^(2)+1^(2)))=0`
i.e. x+y-1=0 and x-y=0
`rArr" "x=y=1/2`
Hence, the coordinates of the vertex are (1/2, 1/2).


Discussion

No Comment Found

Related InterviewSolutions