Saved Bookmarks
| 1. |
The values of x which satisfy the expression \((5+2\sqrt6)^{x^2+3}\) + \((5-2\sqrt6)^{x^2-3}\)= 10 are :(a) ± 2, ± √3 (b) ± √2, ± 4 (c) ± 2, ± √2 (d) 2, √2, √3 |
|
Answer» (c) ± 2, ± √2 Let y = 5 + 2√6. Then \(\frac{1}{y}\) = 5 - 2√6. Thus the given expression reduces to \(y^{x^2-3}\) + \(\big(\frac{1}{y}\big)^{x^2-3}\) = 10 Again let \(y^{x^2-3}\) = t. Then, t + \(\frac{1}{t}\) = 10 ⇒ t2 - 10t + 1 = 0 ⇒ t = \(\frac{10±\sqrt{100-4}}{2}\) = \(\frac{10 ±\sqrt{96}}{2}\) = \(\frac{10 ±4\sqrt{6}}{2}\) = 5 ± 2√6 \((5+2\sqrt6)^{x^2-3}\) = 5 ± 2√6 = (5 ± 2√6)±1 ⇒ x2 – 3 = 1 or x2 – 3 = – 1 ⇒ x2 = 4 or x2 = 2 ⇒ x = ± 2 or x = ± √2 |
|