Saved Bookmarks
| 1. |
The value of `int_-pi^pi cos^2x/[1+a^x].dx`,a>0 is |
|
Answer» Here, `I =f(x) = int_(-pi)^(pi)cos^2x/(1+a^x)dx->(1)` `I = f(-x) = int_(-pi)^(pi) cos^2(-x)/(1+a^-x)dx` `I= int_(-pi)^(pi) cos^2 x/(1+1/a^x)dx` `I= int_(-pi)^(pi) (a^x cos^2x)/(1+a^x)dx->(2)` Adding (1) and (2), `2I = int_(-pi)^(pi) (cos^2 x)(1+a^x)/(1+a^x)` `=> 2I = int_(-pi)^(pi) (cos^2 x)->(3)` Now, as `cos^2 x` is an even function, `:. int_(-pi)^(pi) (cos^2 x) =2 int_(0)^(pi) (cos^2 x)` So, (3) becomes, `:. 2I = 2 int_(0)^(pi) (cos^2 x)` Now, using `cos2x = 2cos^2x -1` in our expression, `=> I = int_(0)^(pi) 1/2 (1+cos2 x)` `=> I =1/2(x+ 2sin(2x)/2)_(0)^(pi)` `=>1/2(pi-0) = pi/2` `:. I = pi/2` |
|