1.

The value of `alpha`such that `sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),sin^(-1)alpha`are the angles of a triangle is`(-1)/(sqrt(2))`(b) `1/2`(c) `1/(sqrt(3))`(d) `1/(sqrt(2))`

Answer» `sin^-1(2/sqrt5) = tan^-1 2`
`sin^-1(3/sqrt10) = tan^-1 3`
`sin^-1(alpha) = tan^-1 (alpha/(sqrt(1-alpha^2)))`
So, given equation becomes,
`tan^-1 2 + tan^-1 3 + tan^-1 (alpha/(sqrt(1-alpha^2))) = pi`
As `2*3 >1`,
`:. tan^-1 2 + tan^-1 3 = pi +tan^-1((2+3)/(1-(2)(3))) = pi+tan^-1(-1) `
So,our equation becomes,
`pi+tan^-1(-1) + tan^-1 (alpha/(sqrt(1-alpha^2))) = pi`
`=>tan^-1 (alpha/(sqrt(1-alpha^2))) = tan^-1(1)`
`=> alpha/(sqrt(1-alpha^2))= 1`
`=>alpha^2 = 1-alpha^2`
`=>alpha = 1/sqrt2`
So, option `d` is the correct option.


Discussion

No Comment Found