1.

The solution set of the equation`sin^(-1)sqrt(1-x^2)+cos^(-1)x=cot^(-1)(sqrt(1-x^2))/x-sin^(-1)x`is`[-1,1]-{0}`(b) `(0,1)uu{-1}``(-1,0)uu{1}`(d) `[-1,1]`A. `[-1, 1] -{0}`B. `(0, 1] uu {-1}`C. `[-1, 0) uu {1}`D. `[-1, 1]`

Answer» Correct Answer - C
`sin^(-1). sqrt(1 -x^(2)) + cos^(-1) x = cot^(-1). (sqrt(1-x^(2)))/(x) - sin^(-1)x`
or `(pi)/(2) + sin^(-1). sqrt(1 -x^(2)) = cot^(-1). (sqrt(1-x^(2)))/(x)`
`tan^(-1). (sqrt(1 -x^(2)))/(x) = - sin^(-1) sqrt(1 -x^(2))`
`rArr x in [-1, 0) uu {1}`


Discussion

No Comment Found