Saved Bookmarks
| 1. |
The solution of the differential equation `ydx+ (x +x^2 y) dy =0` isA. `logy=Cx`B. `-(1)/(xy)+logy=C`C. `(1)/(xy)+logy=C`D. `-(1)/(xy)=C` |
|
Answer» Correct Answer - B::D We have, `ydx+(x+x^(2)y)dy=0` `rArr" "ydx+xdy+x^(2)ydy=0` `rArr" "(d(xy))/((xy)^(2))+(1)/(y)dy=0" "["Dividing throughout by "(xy)^(2)]` On integrating, we get `-(1)/(xy)+logy=C` |
|