1.

The resultant of vectors vecP and vecQ is vecR. The resultant becomes 2vecR when vecP is either doubled or reversed in V its direction.

Answer»

The value of P : Q is `sqrt(3) : sqrt(5)`
The value of P : Q is `sqrt(3) : sqrt(2)`
The RELATION between P and R is P = `sqrt((3)/(2))`R
The relation between P and Q is `P = (1)/(sqrt(3))` Q.

Solution :`P^(2) +Q^(2)+2PQ cos theta= R^(2)`
When P is reversed one gets
`P^(2)+Q^(2)-2PQ cos theta= 4R^(2)`
From eqn (i) and (ii) one get
`-4PQ cos theta=3R^(3)implies PQ cos theta=-(3)/(4) R^(2)`
When P is doubled ,
`4P^(2)+Q^(2)+4PQ cos theta=4R^(2)`
`4P^(2)+4Q^(2)-8PQ cos theta= 16R^(2)`
`(4 xx`eqn. (ii))
From eqn. (iii) and (iv)
`(3Q^(2)-12PQ cos theta= 12R^(2)`
`3Q^(2)=12R^(2)+12PQcostheta=12R^(2)+12(-(3)/(4))R^(2)`
`=12R^(2)-9R^(2)=3R^(2)`
`:. Q= R` Substituting in eqn (i)
`P^(2) +R^(2)+2PQ cos theta=R^(2)`
`:.P^(2) = -2PQ cos theta=-2 -2(-(3)/(4)R^(2))=(3)/(2)R^(2)implies P=sqrt((3)/(2))`R
`:. P: Q = sqrt(3) :sqrt(2)`.


Discussion

No Comment Found

Related InterviewSolutions