Saved Bookmarks
| 1. |
The remainder obtained when 8x4 + 14x3 – 2x2 + 7x – 8 is divided by 4x2 + 3x – 2 is: 1. 8x – 62. 8x + 63. 14x + 104. 14x – 10 |
|
Answer» Correct Answer - Option 4 : 14x – 10 Given: Divivdend = 8x4 + 14x3 – 2x2 + 7x – 8, Divisor = 4x2 + 3x – 2 Concept Used: Deducing given equation in multiple of divisor, we can easily determine remainder Calculation: On deducing given equation ⇒ 8x4 + 14x3 – 2x2 + 7x – 8 ⇒ 8x4 + 6x3 - 4x2 + 8x3 + 2x2 + 7x – 8 ⇒ (4x2 + 3x – 2) × 2x2 + 8x3 + 2x2 + 7x – 8 ⇒ [(4x2 + 3x – 2) × 2x2 ]+ [(4x2 + 3x – 2) × 2x] - 4x2 + 11x - 8 ⇒ [(4x2 + 3x – 2) × 2x2 ]+ [(4x2 + 3x – 2) × 2x] + [(4x2 + 3x – 2) × -1] + 14x - 10 ∴ Required remainder = 14x - 10 |
|