1.

The remainder obtained when 8x4 + 14x3 – 2x2 + 7x – 8 is divided by 4x2 + 3x – 2 is: 1. 8x – 62. 8x + 63. 14x + 104. 14x – 10

Answer» Correct Answer - Option 4 : 14x – 10

Given:

Divivdend = 8x4 + 14x3 – 2x2 + 7x – 8, Divisor = 4x2 + 3x – 2

Concept Used

Deducing given equation in multiple of divisor, we can easily determine remainder

Calculation:

On deducing given equation

⇒ 8x4 + 14x3 – 2x2 + 7x – 8

⇒ 8x4 + 6x3 - 4x2 + 8x3 + 2x2 + 7x – 8

⇒ (4x2 + 3x – 2) × 2x2 + 8x3 + 2x2 + 7x – 8

⇒ [(4x2 + 3x – 2) × 2x2 ]+ [(4x2 + 3x – 2) × 2x] - 4x2 + 11x - 8

⇒ [(4x2 + 3x – 2) × 2x]+ [(4x2 + 3x – 2) × 2x] + [(4x2 + 3x – 2) × -1] + 14x - 10

∴ Required remainder = 14x - 10          



Discussion

No Comment Found

Related InterviewSolutions