1.

The range of the function f(x) = cot-1(x2/(x2 + 1)) is (a, b), find the value of (b/a + 2).

Answer»

f(x) = cot-1(\(\frac{x^2}{x^2+1}\))

\(\because\) x2 + 1 > x2

⇒ \(\frac{x^2}{x^2+1}<1\)

Also \(\frac{x^2}{x^2+1}\geq0\) (\(\because\) x2 \(\geq\) 0 & x2 + 1 > 0)

⇒ 0 \(\leq\) \(\frac{x^2}{x^2+1}<1\)

\(\because\) cot-1x  is a decreasing function.

\(\therefore\) cot-1 1 < cot-1(\(\frac{x^2}{x^2+1}\)\(\leq\) cot-10

⇒ \(\frac{\pi}4\) < f(x) \(\leq\) \(\frac{\pi}2\) 

\(\therefore\) Range of f(x) is ( \(\frac{\pi}4\)\(\frac{\pi}2\)].

 \(\therefore\) a = π/4 & b = π/2

\(\therefore\) b/a + 2 = \(\frac{\pi/2}{\pi/4}\) + 2 = 4/2 + 2 = 4



Discussion

No Comment Found

Related InterviewSolutions