Saved Bookmarks
| 1. |
The range of real number `alpha` for which the equation `z + alpha|z-1| + 2i = 0` has a solution is : |
|
Answer» `Z+alpha|Z-1|+2i=0` `Z+2i=-alpha|Z-1|` `alpha=-(Z+2i)/|Z-1|` `alpha` is real `|z-1|` is real `Z=x+iy` `-iy*2i=0` `y=-2` `alpha=-x/|(x-1)-2i|` `|(x-1)-2i|^2=(-x/alpha)^2` `(x-1)^2+4=x^2/alpha^2` `x^2-2x+4=x^2/alpha^2` `x^2(1-1/alpha^2)-2x+5=0` `D>=0` `b^2-4ac>=0` `4-4(1-1/alpha^2)5>=0` `alpha^2<=5/4` `alpha^2-5/4<=0` `(alpha-sqrt5/2)(alpha+sqrt5/2)<=0` `alpha in [-sqrt5/2,sqrt5/2]` option a is correct. |
|