Saved Bookmarks
| 1. |
The pth, `(2p)th` and `(4p)th` terms of an AP, are in GP, then find the common ratio of GP. |
|
Answer» Let `T_(n)=An+B` ` :. T_(p)=Ap+B,` `T_(2p)=2Ap+B,T_(4p)=4Ap+B` `:.T_(p),T_(2p)T_(4p)` are in GP. `:.(2Ap+B)^(2)=(Ap+B)(4Ap+B)` `implies ABp=0` `:.B=0,A ne 0,p ne 0` ` implies` Common ratio, `r=(T_(2p))/(T_(p))=(2Ap+0)(Ap+0)=2`. |
|