Home
About Us
Contact Us
Bookmark
Saved Bookmarks
Current Affairs
General Knowledge
Chemical Engineering
UPSEE
BSNL
ISRO
BITSAT
Amazon
ORACLE
Verbal Ability
→
General Awareness
→
IIT JEE in General Awareness
→
The product of any matrix by the scalar ............
1.
The product of any matrix by the scalar ......... Is the null matrix.
Answer» The product of any matrix by the scalar 0 is the null matrix i.e., 0.A=0
Show Answer
Discussion
No Comment Found
Post Comment
Related InterviewSolutions
Let `A=" diag "[3,-5,7]" and "B=" diag "[-1,2,4].` ltbr. Find (i) (A+B) (ii) (A-B) (iii) -5A (iv) (2A+3B).`
A2=A THEN FIND VALUE OF (I+A)2 -3A
If `A=[(1,2),(2,1)]` and `f(x)=(1+x)/(1-x)`, then f(A) isA. `[(1,1),(1,1)]`B. `[(2,2),(2,2)]`C. `[(-1,-1),(-1,-1)]`D. none of these
Id `[1//25 0x1//25]=[5 0-a5]^(-2)`, then the value of `x`is`a//125`b. `2a//125`c. `2a//25`d. none of theseA. `a//125`B. `2a//125`C. `2a//25`D. none of these
If `A=[(a+ib,c+id),(-c+id,a-ib)]` and `a^(2)+b^(2)+c^(2)+d^(2)=1`, then `A^(-1)` is equal toA. `[(a-ib,-c-id),(c-id,a+ib)]`B. `[(a+ib,-c+id),(-c+id,a-ib)]`C. `[(a-ib,-c-id),(-c-id,a+ib)]`D. none of these
If the matrix A is such that `({:(1,3),(0,1):})A=({:(1,1),(0,-1):})`, then what is A equal to ?A. `{:[(1,4),(-1,0)]:}`B. `{:[(1,-4),(1,0)]:}`C. `{:[(1,-4),(0,-1)]:}`D. none of these
If `A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta, sin 2beta] , [sin 2 beta, -cos2beta]]` where `0 lt beta lt pi/2` then prove that `BAB=A^(-1)` Also find the least positive value of `alpha` for which `BA^4B= A^(-1)`A.B.C.D.
If `A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta, sin 2beta] , [sin 2 beta, -cos2beta]]` where `0 lt beta lt pi/2` then prove that `BAB=A^(-1)` Also find the least positive value of `alpha` for which `BA^4B= A^(-1)`
If `A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))]`, then `A(alpha, beta)^(-1)` is equal toA. `A(-alpha, -beta)`B. `A(-alpha, beta)`C. `A(alpha, -beta)`D. `A(alpha, beta)`
`{:A=[(cos^2 alpha,cosalphasinalpha),(cosalphasinalpha,sin^2alpha)]:}` `{:B=[(cos^2 beta,cosbetasinbeta),(cosbetasinbeta,sin^2beta)]:}` are two matrices such that the product AB is the null matrix, then `(alpha-beta)` is
Reply to Comment
×
Name
*
Email
*
Comment
*
Submit Reply
Your experience on this site will be improved by allowing cookies. Read
Cookie Policy
Reject
Allow cookies