Saved Bookmarks
| 1. |
The point(s), at which the function f given by f(x) = \(\begin{cases} \frac{x}{|x|},x<0\\ -1, x≥0 \end{cases}\) is continuous, is/are :f(x) = {x/|x|,x<0 -1,x≥0(a) x ∈ R(b) x = 0(c) x ∈ R – {0}(d) x = −1 and 1 |
|
Answer» Option : (a) f(x) = \(\begin{cases} \frac{x}{-x}=-1,x<0\\ -1, x≥0 \end{cases}\) ⇒ f(x) = −1 ⍱ x ∈ R ⇒ f(x) is continuous ⍱ x ∈ R as it is a constant function. |
|