Saved Bookmarks
| 1. |
The order and degree of the differential equation `(d^(2)y)/(dx^(2))+((dy)/(dx))^(1//4)+x^(1//5)=0` respectively areA. 2 and 4B. 2 and 2C. 2 and 3D. 3 and 3 |
|
Answer» Given that, `" "(d^(2)y)/(dx^(2))+((dy)/(dx))^(1//4)=-x^(1//5)` `rArr" "(d^(2)y)/(dx^(2))+((dy)/(dx))^(1//4)=-x^(1//5)` `rArr" "((dy)/(dx))^(1//4)=-(x^(1//5)+(d^(2)y)/(dx^(2)))` On squaring both sides, we get `" "((dy)/(dx))^(1//2)=(x^(1//5)+(d^(2)y)/(dx^(2)))^(2)` Again, on sqaring both sides, we have `" "(dy)/(dx)=(x^(1//5)+(d^(2)y)/(dx^(2)))^(4)` order = 2, degree = 4 |
|