1.

The most general solution of tan θ = –1 and cos θ = \(\frac{1}{\sqrt{2}}\) is (a) nπ + (–1)n \(\frac{π}{4}\)  (b) 2nπ + \(\frac{3π}{4}\)(c) nπ +  (–1)n \(\frac{5π}{4}\)  (d)  2nπ + \(\frac{7π}{4}\)

Answer»

Answer : (d)  2nπ + \(\frac{7π}{4}\)  

tan θ = –1 

⇒ tan θ = – tan π/4 = tan (π – π/4) = tan (2π - π/4)

⇒ tan θ = tan \(\frac{3π}{4}\) or tan \(\frac{7π}{4}\) ⇒ θ = \(\frac{3π}{4}\) , \(\frac{7π}{4}\) ...(i)

cos θ = \(\frac{1}{\sqrt{2}}\)

⇒ cos θ = cos \(\frac{π}{4}\)

= cos (2π – π/4)

⇒ cos θ = cos \(\frac{π}{4}\) = cos \(\frac{7π}{4}\) ⇒ θ = \(\frac{π}{4}\)\(\frac{7π}{4}\)...(ii)

∴ From (i) and (ii) θ = \(\frac{7π}{4}\)  is the only value of θ in [0, 2π] which satisfies both the equations. 

∴ The general value of θ satisfying both the equations is

θ =  2nπ + \(\frac{7π}{4}\)  



Discussion

No Comment Found