Saved Bookmarks
| 1. |
The line `lx+my+n=0` is a normal to the parabola `y^2 = 4ax` ifA. `al(l^(2)+2m^(2))+m^(2)n=0`B. `al(l^(2)+2m^(2))+m^(2)n`C. `al(2l^(2)+2m^(2))+m^(2)n=0`D. `al(2l^(2)+2m^(2))+m^(2)n` |
|
Answer» Correct Answer - A The equation of the line is lx+n=0. `or, y=((-1)/m)x+((-n)/m)` This will be normal to `y^(2)=4ax`, if `(-n)/m=-2a((-1)/m)-a((-1)/m)^(3)" "{"Using : c"=-2am-am^(3)}` `rArr" "-nm^(2)=2alm^(2)+al^(3)rArral(l^(2)+2m^(2))+m^(2)n=0` |
|