1.

The Integral function of differential equation dy/dx - y + tanx = cosx is

Answer»

\(\frac{dy}{dx}\) - y + tanx = cosx

I.F = e -tanx dx

= e-log secx\(\frac{1}{secx}=cosx\)

It's complete solution is

y x (I.F) = (I.F) x 2 dx

\(\Rightarrow\) y. cosx = cos2x dx

\(\int \frac{1+cos2x}{2}\,dx\)

\(\frac{x}{2}+\frac{sin\,2x}{4}+c\)

Hence, complete solution of given differential equation is y = \(\frac{x}{2}\) sec x + \(\frac{sin x}{2}+c\) sec x.



Discussion

No Comment Found

Related InterviewSolutions