| 1. |
The greatest value of 5 sin2 x + 7 cos2 x - 4 sin x cos x will be:1. 6 - √52. 6 + √53. -6 + √54. -6 - √5 |
|
Answer» Correct Answer - Option 2 : 6 + √5 Concept: Following steps to finding maxima and minima using derivatives. 1. Find the derivative of the function. 2. Set the derivative equal to 0 and solve. This gives the values of the maximum and minimum points. 3. Now we have to find the second derivative. I. f``(x) is less than 0 then the given function is said to be maxima II. If f``(x) Is greater than 0 then the function is said to be minima sin x = cos x when x = π/4 Short trick: The maximum value of the trigonometric function \({\bf{a}}\;{\bf{sin}}\;{\bf{x}}\; + \;{\bf{b}}\;{\bf{cos}}\;{\bf{x}}\) is \(\sqrt {{{\bf{a}}^2} + {{\bf{b}}^2}} \) Calculation: Given: y = 5 sin2 x + 7 cos2 x – 4 sin x cos x y = (2 sin x – cos x)2 + sin2 x + 6 cos2 x y = (2 sin x – cos x)2 + (sin2 x + cos2 x) + 5 cos2 x \(y_{max}=[\sqrt{(2)^2+(1)^2 )}]+1+5\) =6+√5 |
|