1.

The function f(x) = 1 - x - x3  is decreasing for1. x ≥ \(\frac {-1} 3\)2. x 14. All values of x

Answer» Correct Answer - Option 4 : All values of x

Concept:

  • If f′(x) > 0 then the function is said to be strictly increasing.
  • If f′(x) < 0 then the function is said to be decreasing.

 

Calculation:

Given: f(x) = 1 - x - x3

Differentiating with respect to x, we get

⇒ f'(x) = 0 - 1 - 3x2

⇒ f'(x) =  - 1 - 3x2

For decreasing function, f'(x) < 0

⇒ -1 - 3x2 < 0

⇒ -(1 + 3x2) < 0

As we know, Multiplying/Dividing each side of an inequality by a negative number reverses the direction of the inequality symbol.

⇒ (1 + 3x2)  > 0

As we know, x2 ≥ 0,  x ∈ R

So, 1 + 3x2 > 0, x ∈ R

Hence, the function is decreasing for all values of x



Discussion

No Comment Found

Related InterviewSolutions