Saved Bookmarks
| 1. |
The equation of the tangent to the circle `x^2+y^2=25`passing through `(-2,11)`is`4x+3y=25`(b) `3x+4y=38``24 x-7y+125=0`(d) `7x+24 y=250`A. `4x+3y=25`B. `3x+4y=38`C. `24x-7y+125=0`D. `7x+24y=250` |
|
Answer» Correct Answer - 1,3 The equation of any tangent to the circle `x^(2)+y^(2)=25` is of form `y= mx + 5 sqrt(1+m^(2))` (where m is the slope ) It passes through `( -2,11) ` .Therefore, `11= - 2m +5 sqrt(1+m^(2))` or `(11+2m)^(2) = 25 (1+m^(2))` or `m=(24)/(7),- (4)/(3)` Thereforem the equation of tangent is `24x-7y+125=0` or `4x+3y=25` |
|