1.

The equation of the directrix of the parabola with vertex at the originand having the axis along the x-axis and a common tangent of slope 2 with thecircle `x^2+y^2=5`is (are)`x=10`(b) `x=20``x=-10`(d) `x=-20`A. x=10B. x=20C. x=-10D. x=-20

Answer» Correct Answer - A::C
1,3 The line y=2x+c ix a tangent to `x^(2)+y^(2)=5`.
If `c^(2)=25`, then `c=pm5`.
Let the equation of the parabola be `y^(2)=4ax`. Then
`(a)/(2)=pm5`
`ora=pm10`
So, the equation of the parabola is `y^(2)=pm40x`.
Also, the equation of the directrices are `x=pm10`.


Discussion

No Comment Found

Related InterviewSolutions