1.

The equation of tangents to the curve `y=cos(x+y), -2pi

Answer» `x+2y=0`
`m=-1/2`
`y=cos(x+y)`
differentiate with respect to x
`dy/dx=-sin(x+y)(1+y^2)`
`-1/2=-sin(x+y)(1-1/2)`
`-1=-sin(x+y)`
`sin(x+y)=1`
`x+y=pi/2`
`y=cospi/2=0`
`sinx=1`
`at x=-3/2pi,pi/2`
`(-3/2pi,0)` and `(pi/2,0)`
`y-0=-1/2(x+3/2pi)`
`y=-x/2-3/4pi`
`4y+2x+3pi=0`
`y-0=-1/2(x-pi/2)`
`y=-x/2+pi/4`
`4y+2x-pi=0`.


Discussion

No Comment Found