Saved Bookmarks
| 1. |
The difference between the sides at right angles in a right-angled triangle is 14 cm. The area of the triangle is 120 cm2. Calculate the perimeter of the triangle. |
|
Answer» Suppose the sides containing right angle be x and (x – 14) cm Area of right angled triangle = \(\frac { 1 }{ 2 }\) x base x altitude = \(\frac { 1 }{ 2 }\) × x (x – 14) cm2 area = 120 cm2 ⇒ 120 = \(\frac { 1 }{ 2 }\) x (x2 – 14x) ⇒ x2 – 14x – 240 = 0 ⇒ x2 – 24x + 10x – 240 = 0 ⇒ x(x – 24) + 10(x – 24) = 0 ⇒ (x – 24)(x + 10) = 0 either x – 24 = 0 ⇒ x = 24 or x + 10 = 0 ⇒ x = -10 (neglecting) x = 24 cm (one side) and another side = (x – 24) = (24 – 14) = 10 cm Hypotenuse = √(242 + 102) = √(576 + 100) = √676 = 26 cm Perimeter of the triangle = 24 + 10 + 26 = 60 cm |
|