1.

The diagonals AC and BD of a rectangle ABCD intersect each other at P. If ∠ABD = 50°, then ∠DPC = A. 70° B. 90° C. 80° D. 100°

Answer»

Option : (C)

Given that, 

∠ABD = ∠ABP = 50° 

∠PBC +∠ABP = 90° 

(Each angle of a rectangle is a right angle) 

∠PBC = 40° 

Now, 

PB = PC 

(Diagonals of a rectangle are equal and bisect each other) 

Therefore, 

∠BCP = 40° (Equal sides has equal angle) 

In triangle BPC, 

∠BPC + ∠PBC + ∠BCP = 180° 

(Angle sum property of a triangle) 

∠BPC = 100° 

∠BPC + ∠DPC = 180° (Angles in a straight line) 

∠DPC = 180° – 100° 

= 80°



Discussion

No Comment Found