| 1. |
The coordinate of foot of perpendicular drawn from the point A(1, 0, 3) to the join of the point B(4, 7, 1) and C(3, 5, 3) are1. \(\left( \frac 5 3 , \frac 7 3 , \frac {17}{3}\right)\)2. (5, 7, 17)3. \(\left( \frac 5 3 , \frac {-7} 3 , \frac {17}{3}\right)\)4. None of these |
|
Answer» Correct Answer - Option 1 : \(\left( \frac 5 3 , \frac 7 3 , \frac {17}{3}\right)\) Concept: Line in 3D: Equation of line passing through a point P(x1, y1, z1) with direction cosine l, m, n: \(\frac{{{\rm{x}} - {{\rm{x}}_1}}}{{\rm{l}}} = \frac{{{\rm{y}} - {{\rm{y}}_1}}}{{\rm{m}}} = \frac{{{\rm{z}} - {{\rm{z}}_1}}}{{\rm{n}}}\) Equation of line passing through two points P(x1, y1, z1) and Q(x2, y2, z2): \(\frac{{{\rm{x}} - {{\rm{x}}_1}}}{{{{\rm{x}}_2} - {{\rm{x}}_1}}} = \frac{{{\rm{y}} - {{\rm{y}}_1}}}{{{{\rm{y}}_2} - {{\rm{y}}_1}}} = \frac{{{\rm{z}} - {{\rm{z}}_1}}}{{{{\rm{z}}_2} - {{\rm{z}}_1}}}\)
Note: Let direction ratios of a line be (l1, m1, n1) and for another line be (l2, m2, n2) then: If lines are perpendicular, l1l2 + m1m2 + n1n2 = 0 If lines are parallel, \(\frac{{{{\rm{l}}_1}}}{{{{\rm{l}}_2}}} = \frac{{{{\rm{m}}_1}}}{{{{\rm{m}}_2}}} = \frac{{{{\rm{n}}_1}}}{{{{\rm{n}}_2}}}\)
Calculation: Given: A = (1, 0, 3) B = (4, 7, 1) C = (3, 5, 3) Direction ratio of line BC is (-1, -2, 2) Equation of BC, \(\frac{{{\rm{x}} - 4}}{{3 - 4}} = \frac{{{\rm{y}} - { 7} }}{{5-7}} = \frac{{{\rm{z}} - 1}}{{3-1}}\) \(\Rightarrow \frac{{{\rm{x}} - 4}}{{-1}} = \frac{{{\rm{y}} - { 7} }}{{-2}} = \frac{{{\rm{z}} - 1}}{{2}} =\rm k\) ⇒ x = -k + 4, y = -2k + 7 and z = 2k + 1 General point on BC be D = (-k + 4, -2k + 7, 2k + 1) and let D be foot of perpendicular. Direction ratio of line AD will be (-k + 4 - 1), (-2k + 7 - 0), (2k + 1 - 3) ⇒ (-k + 3, -2k + 7, 2k - 2) Now, since the line BC and AD are perpendicular, l1l2 + m1m2 + n1n2 = 0 So, (-k + 3) × -1 + (-2k + 7) × -2 + (2k - 2) × 2 = 0 ⇒ k - 3 + 4k - 14 + 4k - 4 = 0 ⇒ 9k = 21 ⇒ k = \(\frac 73\) So, D = \(\left( \frac 5 3 , \frac 7 3 , \frac {17}{3}\right)\) |
|