1.

The coefficient of x12 in the expansion of \(\left(3x^2 + \frac 1 x\right)^{30}\) is:1. \(\left( {\begin{array}{*{20}{c}} {30}\\ C\\ {15} \end{array}} \right){3^{15}}\)2. \(\left( {\begin{array}{*{20}{c}} {30}\\ C\\ {10} \end{array}} \right){3^{12}}\)3. \(\left( {\begin{array}{*{20}{c}} {30}\\ C\\ {12} \end{array}} \right){3^{12}}\)4. \(\left( {\begin{array}{*{20}{c}} {30}\\ C\\ {16} \end{array}} \right){3^{14}}\)

Answer» Correct Answer - Option 4 : \(\left( {\begin{array}{*{20}{c}} {30}\\ C\\ {16} \end{array}} \right){3^{14}}\)

Concept:

The expansion of (x + y)n is given by the binomial expansion. The expansion will be 

(x + y)n = nC0 xn + nC1 xn-1 y + nC2 xn-2 y2 + ... + nCr xn-r yr + ... + nCn yn;

The general term is given by 

Tr =  nCr xn-r yr ;

Calculation:

Given expansion is \(\left(3x^2 + \frac 1 x\right)^{30}\)

Let the rth term has x12 and the coefficient be A;

⇒ Tr = A x12;

The general rth term of the given expansion will be 

Tr = \(^{30}C_r (3x^2)^{30-r}(\frac {1}{x})^{r} \)

⇒ Tr = 30Cr 330-r × x60-2r × x-r = 30Cr 330-r × x60-3r

Equating the power of x with 12,

⇒ 60 - 3r = 12 ⇒ r = 16

Now the coefficient will be 

A = 30Cr 330-r = 30C16 314;



Discussion

No Comment Found

Related InterviewSolutions