Saved Bookmarks
| 1. |
The coefficient of x12 in the expansion of \(\left(3x^2 + \frac 1 x\right)^{30}\) is:1. \(\left( {\begin{array}{*{20}{c}} {30}\\ C\\ {15} \end{array}} \right){3^{15}}\)2. \(\left( {\begin{array}{*{20}{c}} {30}\\ C\\ {10} \end{array}} \right){3^{12}}\)3. \(\left( {\begin{array}{*{20}{c}} {30}\\ C\\ {12} \end{array}} \right){3^{12}}\)4. \(\left( {\begin{array}{*{20}{c}} {30}\\ C\\ {16} \end{array}} \right){3^{14}}\) |
|
Answer» Correct Answer - Option 4 : \(\left( {\begin{array}{*{20}{c}} {30}\\ C\\ {16} \end{array}} \right){3^{14}}\) Concept: The expansion of (x + y)n is given by the binomial expansion. The expansion will be (x + y)n = nC0 xn + nC1 xn-1 y + nC2 xn-2 y2 + ... + nCr xn-r yr + ... + nCn yn; The general term is given by Tr = nCr xn-r yr ; Calculation: Given expansion is \(\left(3x^2 + \frac 1 x\right)^{30}\) Let the rth term has x12 and the coefficient be A; ⇒ Tr = A x12; The general rth term of the given expansion will be Tr = \(^{30}C_r (3x^2)^{30-r}(\frac {1}{x})^{r} \) ⇒ Tr = 30Cr 330-r × x60-2r × x-r = 30Cr 330-r × x60-3r Equating the power of x with 12, ⇒ 60 - 3r = 12 ⇒ r = 16 Now the coefficient will be A = 30Cr 330-r = 30C16 314; |
|