1.

The centres of those circles which touch the circle, `x^2+y^2-8x-8y-4=0`, externally and also touch thex-axis, lieon :(1) a circle.(2) an ellipse which is not acircle.(3) a hyperbola.(4) a parabola.

Answer» `x^2 + y^2 - 8x - 8y - 4= 0`
`x^2 - 8x + 16 + y^2 - 8y+16 - 4 - 16-16= 0`
`(x-4)^2 + (y- 4)^2 - 36 = 0`
`(x-4)^2 + (y-4)^2 = 6^2`
radius`= 6`
centre= `(4,4)`
centre of circle which touches the given circle externally is `sqrt((h-4)^2 + (k-4)^2) = 6 + r`
`sqrt((h-4)^2 + (k-4)^2) = (6+k)`
`(h-4)^2 + (k-4)^2 = (6 + k)^2`
`h^2 + 16 - 8h + k^2 + 16 - 8k = 36 + k^2 + 12k`
`h^2 -8h-20k + 32 - 36= 0`
`h^2 - 8h - 20k - 4= 0`
keeping h= x & k=y
`x^2 - 8x - 20y - 4=0`
this eqn is of parabola
so, option 3 is correct


Discussion

No Comment Found

Related InterviewSolutions