1.

tanq +cotq=4 then the value of the tan^4q+ cot^4q=

Answer» Given Equation is tanA + cotA = 4.On squaring both sides, we get= > (tanA + cotA)^2 = (4)^2= > tan^2A + cot^2A + 2tanAcotA = 16= > tan^2A + cot^2A + 2 * tanA * (1/tanA) = 16= > tan^2A + cot^2A + 2 = 16= > tan^2A + cot^2A = 16 - 2= > tan^2A + cot^2A = 14.On squaring both sides, we get= > (tan^2A + cot^2A)^2 = (14)^2= > tan^4A + cot^4A + 2 * tan^4A * cot^4a = 196= > tan^4A + cot^4A + 2 * tan^4A * (1/tan^4A) = 196= > tan^4A + cot^4A + 2 = 196= > tan^4A + cot^4A = 196 - 2= > tan^4A + cot^4A = 194.
Given Equation is tanA + cotA = 4.On squaring both sides, we get= > (tanA + cotA)^2 = (4)^2= > tan^2A + cot^2A + 2tanAcotA = 16= > tan^2A + cot^2A + 2 * tanA * (1/tanA) = 16= > tan^2A + cot^2A + 2 = 16= > tan^2A + cot^2A = 16 - 2= > tan^2A + cot^2A = 14.On squaring both sides, we get= > (tan^2A + cot^2A)^2 = (14)^2= > tan^4A + cot^4A + 2 * tan^4A * cot^4a = 196= > tan^4A + cot^4A + 2 * tan^4A * (1/tan^4A) = 196= > tan^4A + cot^4A + 2 = 196= > tan^4A + cot^4A = 196 - 2= > tan^4A + cot^4A = 194.


Discussion

No Comment Found