1.

tanh\(\left(\frac{\pi i}{4}\right)\) – coth\(\left(\frac{\pi i}{4}\right)\) is equal to

Answer»

tanh\(\left(\frac{\pi i}{4}\right)\) – coth\(\left(\frac{\pi i}{4}\right)\)

\(=\cfrac{\sinh\left(\frac{\pi i}{4}\right)}{\cosh\left(\frac{\pi i}{4}\right)}\) \(-\cfrac{\cosh\left(\frac{\pi i}{4}\right)}{\sinh\left(\frac{\pi i}{h}\right)}\)

\(=\cfrac{\sinh^2\left(\frac{\pi i}{4}\right)-\cosh^2\left(\frac{\pi i}{4}\right)}{\sinh\left(\frac{\pi i}{4}\right)\cosh\left(\frac{\pi i}{4}\right)}\)

\(=\cfrac{-1}{\frac{1}{2}\times 2\sinh\left(\frac{\pi i}{h}\right)\cosh\left(\frac{\pi i}{h}\right)}\)     

(\(\because\) 1 + sinh2x = cosh2x ⇒ sinh2x – cosh2x = –1)

\(=\cfrac{-2}{\sinh\left(\frac{\pi i}{2}\right)}\)  (\(\because\) 2sinh(x) cosh(x) = sinh(2x))

\(=\frac{-2}{i}\)  \(\big(\because\) i sinh(x) = sinix ⇒ sinh\(\left(\frac{\pi}{2}i\right)\) \(=\cfrac{\sin\left(i^2\frac{\pi}{2}\right)}{i}\) \(=\cfrac{-\sin \frac{\pi}{2}}{i^2}i = i\big)\)

\(=\frac{-2}{i^2}i\)

\(=2i\) \(\big(\because\) i2 = –1)



Discussion

No Comment Found

Related InterviewSolutions