1.

`tan(pi/4+1/2cos^-1x)+tan(pi/4-1/2cos^-1x)`, `x!=0` is equal to

Answer» Let `1/2 cos^-1x = theta=> cos2theta = x`
Then, our expression becomes,
`tan(pi/4+theta)+tan(pi/4-theta)`
`=(1+tantheta)/(1-tantheta) + (1-tantheta)/(1+tantheta)`
`(1+tan^2theta+2tantheta+1+tan^2theta-2tantheta)/(1-tan^2theta)`
`=2((1+tan^2theta)/(1-tan^2theta))`
As `cos2theta = (1-tan^2theta)/(1+tan^2theta)`
So, our expression becomes,
`=2/(cos 2theta) = 2/x`, which is the desired value for our expression.


Discussion

No Comment Found