1.

Suppose det ` [{:(sum_(k=0)^(n)k,,sum_(k=0)^(n).^nC_(k)k^2),(sum_(k=0)^(n).^nC_(k)k,,sum_(k=0)^(n).^nC_(k)3^(k)):}]=0` holds for some positive integer n. then `sum_(k=0)^(n)(.^nC_(k))/(k+1)` equals ............

Answer» Correct Answer - `6.20`
It is given that
`| {:(Sigma_(k=0)^(n)k,Sigma_(k=0)^(n).^nC_kk^2),(Sigma_(k=0)^(n).^nC_k.k,Sigma_(k=0)^(n).^nC_k3^k):}|=0`
`| {:((n(n+1))/(2),n(n+1)2^(n-2)),(n.2^(n-1),4^n):}|=0`
`[ {:(becauseSigma_(k=0)^(n)k=(n(n+1))/(2)",",Sigma_(k=0)^(n).^nC_k k=n.2^(n-1)),(Sigma_(k=0)^(n).^nC_k k^2=n(n+1)2^(n-1)and,Sigma_(k=0)^(n).^nC_k 3^(k)=4^n):}]`
`rArr (n(n+1))/(2)4^n-n^2(n+1)2^(2n-3)=0`
` rArr (4^n)/(2)-n(4^(n-1))/(2)=0rArr n=4`
` therefore Sigma_(k=0)^(n)(.^nC_(k))/(k+1)=Sigma_(k=0)^(4)(.^4C_k)/(k+1)=(1)/(5)Sigma_(k=0)^(4).^3C_k+1=(1)/(5)(2^5-1)=(1)/(5)(32-1)=(31)/(5)=6.20`


Discussion

No Comment Found

Related InterviewSolutions