Saved Bookmarks
| 1. |
Statement -1: `(1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1))` Statement -2: `(1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)`A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.C. Statement -1 is true, Statement -2 is False.D. Statement -1 is False, Statement -2 is True. |
|
Answer» Correct Answer - C We, have `(1^(2))/(1.3)+(2^(2))/(3.7)+(3^(2))/(5.7)+ . . . . . . . . . . . . . +(n^(2))/((2n-1)(2n+1))` `=underset(r=1)overset(n)sum(r^(2))/((2r-1)(2r+1))` `=(1)/(4)underset(r=1)overset(n)sum(4r^(2))/((2r-1)(2r+1))` `=(1)/(4)underset(r=1)overset(n)sum((2r-1)(2r+1)+1)/((2r-1)(2r+1))` `=(1)/(4)underset(r=1)overset(n)sum{1+(1)/((2r-1)(2r+1))}` `=(1)/(4)underset(r=1)overset(n)sum1+(1)/(8)underset(r=1)overset(n)sum((1)/(2r-1)-(1)/(2r+1))` `=(n)/(4)+(1)/(8)(1-(1)/(2n+1))=(n(n+1))/(2(2n+1))` So, statement -1 is true. Statement -2 is fals, because `(1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . . .+(1)/((2n-1)(2n+1))` `=underset(r=1)overset(n)sum(1)/((2r-1)(2r+1))=(1)/(2)underset(r=1)overset(n)sum((1)/(2r-1)-(1)/(2r+1))` `=(1)/(2)(1-(1)/(2n+1))=(n)/(2n+1)` |
|