Saved Bookmarks
| 1. |
\( \sqrt{1+100 \sqrt{1+101 \sqrt{1+102 \sqrt{1+103 \times 105}}}} \) |
|
Answer» \(\sqrt{1+100\sqrt{1+101\sqrt{1+102\sqrt{1+103\times105}}}}\) = \(\sqrt{1+100\sqrt{1+101\sqrt{1+102\sqrt{1+(104-1)\times(104+1)}}}}\) = \(\sqrt{1+100\sqrt{1+101\sqrt{1+102\sqrt{1+104^2-1}}}}\) = \(\sqrt{1+100\sqrt{1+101\sqrt{1+102\times104}}}\) = \(\sqrt{1+100\sqrt{1+101\sqrt{1+(103-1)(103+1)}}}\) = \(\sqrt{1+100\sqrt{1+101\sqrt{1+(103^2-1)}}}\) = \(\sqrt{1+100\sqrt{1+101\times103}}\) = \(\sqrt{1+100\sqrt{1+(102-1)(102+1)}}\) = \(\sqrt{1+100\sqrt{1+102^2-1}}\) = \(\sqrt{1+100\times102}\) = \(\sqrt{1+(101-1)(101+1)}\) = \(\sqrt{1+101^2-1}\) = 101 |
|