1.

Solved by using separate methodxy=(1+x²)dy/dx

Answer»

xy = (1+x)2 \(\frac{dy}{dx}\)

⇒ \(\frac{dy}{y}=\frac{x}{1+x^2}dx\)

⇒ log y = 1/2 log (1+x2) + 1/2 log c (By integrating both sides and 1/2 log c is an integral constant)

⇒ 2 log y = log (1+x2) + log c

⇒ log y2 = log c(1+x2) (∵ log A + log B = log AB and n log a = log an)

⇒ y2 = c(1+x2).



Discussion

No Comment Found

Related InterviewSolutions