| 1. |
Solve \( x \frac{d y}{d x}+\frac{2 y}{x}=\frac{1}{x^{3}} \) |
|
Answer» x\(\frac{dy}{dx}+\frac{2y}x=\frac1{x^3}\) ⇒ \(\frac{dy}{dx}+\frac{2}{x^2}y=\frac1{x^4}\) which is linear differential equation. ∴ I.F. = \(e^{\int\frac2{x^2}dx} = e^{\frac{-2}x}\) y x I.F. = \(\int\frac1{x^4}(I.F)dx\) ⇒ y. e\(\frac{-2}x\) = \(\frac{e^{\frac2x}}{x^4}dx\) Let \(\frac{-2}x=t\) ⇒ \(\frac2{x^2}dx=dt\) ∴ ye\(\frac{-2}x\) = \(\frac12\int\frac{t^2}4e^tdt\) = \(\frac18\)(t2et - 2tet + et) + c = \(\frac18\)(t2 - 2t + 1)et + c left part y.e-2/x = \(\frac18\)(t - 1)2et + c ⇒ ye-2/x = \(\frac18\) (-2/x - 1)2e-2/x + c ( ∵ t = -2/x) ⇒ y = \(\frac18\)(2/x + 1)2 + ce2/x which is general solution of given differential equation. |
|