1.

Solve: x dy/dx + z = x, x dz/dx + y = 0.

Answer»

\(x\frac{dy}{dx}\) + z = x ----(1)

\(x\frac{dz}{dx}\) + y = 0 -----(2)

By adding (1) and (2) we get

\(x\frac{dy}{dx}\) (y + z) + (y + z) = x ---(3)

Let y + z = ω

then equation (3) converts to

\(x\frac{d\omega}{dx}+\omega=x\)

\(\Rightarrow\) \(\frac{d\omega}{dx}+\frac{\omega }{x}=1 \)

∴ I.F = \(e^{\int\frac{1}{x}dx}\) = elogx = x

complete solution is,

ω x (I.F) = ∫(I.F) x Q dx = ∫\(x\) x 1 dx = \(\frac{x^2}{2}+c\)

\(\Rightarrow\) x(y + z) = \(\frac{x^2}{2}+c\) ----- (4)

(∵ I.F = x and ω = y + z)

Equation (4) represent solution of pair of given differential equations.



Discussion

No Comment Found

Related InterviewSolutions