| 1. |
Solve:x^2(x^2-1)(dy/dx)+x(x^2+1)y=x^2-1 |
|
Answer» x2(x2 – 1)\(\frac{dy}{d\mathrm x}\) + x(x2 + 1)y = x2 – 1 \(\Rightarrow \frac{dy}{d\mathrm x}+\frac{\mathrm x(\mathrm x^2+1)}{\mathrm x^2(\mathrm x^2-1)}y\) \(=\frac{\mathrm x^2-1}{\mathrm x^2(\mathrm x^2-1)}=\frac{1}{\mathrm x^2}\) Which is a linear differential equation. where, p \(=\frac{\mathrm x(\mathrm x^2+1)}{\mathrm x^2(\mathrm x^2-1)}\) \(=\frac{\mathrm x^2+1}{\mathrm x(\mathrm x^2-1)}\) \(=\frac{\mathrm x^2-1+2}{\mathrm x(\mathrm x^2-1)}\) \(=\frac{1}{\mathrm x}+\frac{2}{\mathrm x(\mathrm x^2-1)}\) \(=\frac{1}{\mathrm x}+\frac{2}{\mathrm{x(x-1)(x+1)}}\) let \(\frac{2}{\mathrm x(\mathrm x+1)(\mathrm x+1)}\) \(=\frac{A}{\mathrm x}+\frac{B}{\mathrm x+1}+\frac{C}{\mathrm x-1}\) Then A(x + 1)(x – 1) + Bx(x – 1) + Cx(x + 1) = 2 For x = 0, –A = 2 ⇒ A = –2 For x = 1, 2C = 2 ⇒ C = 1 For x = –1, 2B = 2 ⇒ B = 1 Hence, \(\frac{2}{\mathrm x(\mathrm x-1)(\mathrm x+1)}\) \(=\frac{-2}{\mathrm x}+\frac{1}{\mathrm x+1}+\frac{1}{\mathrm x-1}\) \(\therefore p=\frac{1}{\mathrm x}-\frac{2}{\mathrm x}+\frac{1}{\mathrm x+1}+\frac{1}{\mathrm x-1}\) \(=-\frac{1}{\mathrm x}+\frac{1}{\mathrm x+1}+\frac{1}{\mathrm x-1}\). Now, I.F \(=e^{\int pd\mathrm x}\) \(=\int\limits_e\left(\frac{-1}{\mathrm x}+\frac{1}{\mathrm x+1}+\frac{1}{\mathrm x-1}\right)d\mathrm x\) \(=e^{-\log \mathrm x+\log(\mathrm x+1)+\log(\mathrm x-1)}\) \(=e^{\log\left(\frac{(\mathrm x+1)(\mathrm x-1)}{\mathrm x}\right)}\) \(=\frac{\mathrm x^2-1}{\mathrm x}\) \(=\left(\mathrm x-\frac{1}{\mathrm x}\right)\). Now, complete solution of given linear differential equation is \(y.\left(\mathrm x-\frac{1}{\mathrm x}\right)\) \(=\int 2\times \left(\mathrm x-\frac{1}{\mathrm x}\right)d\mathrm x\) \(=\int \frac{1}{\mathrm x^2}\left(\mathrm x-\frac{1}{\mathrm x}\right)d\mathrm x\) \(=\int \left(\frac{1}{\mathrm x}-\frac{1}{\mathrm x^3}\right)d\mathrm x\) \(=\log \mathrm x + \frac{1}{2\mathrm x^2}+C\) Hence, solution of given differential equation is \(y\left(\mathrm x-\frac{1}{\mathrm x}\right)\) \(=\log \mathrm x + \frac{1}{2\mathrm x^2}+C\). |
|