1.

Solve the equation for x: arcsin x+ arcsin(1-x) = arccosx

Answer»

arc(sinx) + arc(sin(1-x)) = arc(cosx)

⇒ sin-1x + sin-1(1-x) = cos-1x

⇒ sin-1x + sin-1(1-x) = \(\frac{\pi}{2}\)- sin-1x

(∵ sin-1x + cos-1x = \(\frac{\pi}{2}\))

⇒ 2sin-1x = \(\frac{\pi}{2}\) - sin-1(1-x)

⇒ sin-1(\(2x\sqrt{1-x^2}\)) = cos-1(1-x)

(∵ 2sin-1x = sin-1(\(2x\sqrt{1-x^2}\))

⇒ sin-1(\(2x\sqrt{1-x^2}\)) = sin-1(\(\sqrt{1-(1-x)^2}\))

(∵ cos-1x = sin-1\(\sqrt{1-x^2}\))

⇒ \(2x\sqrt{1-x^2}\) = \(\sqrt{1-(1-x)^2}\)

⇒ 4x2(1-x2) = 1 - (1-x2)

⇒ 4x2 - 4x4 = 1 - (1+x2-2x)

⇒ 4x2 - 4x4 = -x2 + 2x

⇒ 4x4 - 5x2 + 2x = 0

⇒ x (4x3 - 5x + 2) = 0

⇒ x (x - \(\frac{1}{2}\)) (4x2 + 2x - 4) = 0

⇒ 2x (x - \(\frac{1}{2}\))(2x2 + x - 2) = 0

⇒ x = 0,\(\frac{1}{2}\),\(\frac{-1\pm \sqrt{1+16}}{4}\) = 0,\(\frac{1}{2}\),\(\frac{-1+\sqrt{17}}{4}\)\(\frac{-1-\sqrt{17}}{4}\)

⇒ x = 0,\(\frac{1}{2}\),\(\frac{-1+\sqrt{17}}{4}\) 

(∵ Domain of f(x) is x ∈ [0,\(\frac{\pi}{2}\)

∴ x ≠ \(\frac{-1-\sqrt{17}}{4}\))



Discussion

No Comment Found

Related InterviewSolutions