| 1. |
Solve the equation for x: arcsin x+ arcsin(1-x) = arccosx |
|
Answer» arc(sinx) + arc(sin(1-x)) = arc(cosx) ⇒ sin-1x + sin-1(1-x) = cos-1x ⇒ sin-1x + sin-1(1-x) = \(\frac{\pi}{2}\)- sin-1x (∵ sin-1x + cos-1x = \(\frac{\pi}{2}\)) ⇒ 2sin-1x = \(\frac{\pi}{2}\) - sin-1(1-x) ⇒ sin-1(\(2x\sqrt{1-x^2}\)) = cos-1(1-x) (∵ 2sin-1x = sin-1(\(2x\sqrt{1-x^2}\)) ⇒ sin-1(\(2x\sqrt{1-x^2}\)) = sin-1(\(\sqrt{1-(1-x)^2}\)) (∵ cos-1x = sin-1\(\sqrt{1-x^2}\)) ⇒ \(2x\sqrt{1-x^2}\) = \(\sqrt{1-(1-x)^2}\) ⇒ 4x2(1-x2) = 1 - (1-x2) ⇒ 4x2 - 4x4 = 1 - (1+x2-2x) ⇒ 4x2 - 4x4 = -x2 + 2x ⇒ 4x4 - 5x2 + 2x = 0 ⇒ x (4x3 - 5x + 2) = 0 ⇒ x (x - \(\frac{1}{2}\)) (4x2 + 2x - 4) = 0 ⇒ 2x (x - \(\frac{1}{2}\))(2x2 + x - 2) = 0 ⇒ x = 0,\(\frac{1}{2}\),\(\frac{-1\pm \sqrt{1+16}}{4}\) = 0,\(\frac{1}{2}\),\(\frac{-1+\sqrt{17}}{4}\), \(\frac{-1-\sqrt{17}}{4}\) ⇒ x = 0,\(\frac{1}{2}\),\(\frac{-1+\sqrt{17}}{4}\) (∵ Domain of f(x) is x ∈ [0,\(\frac{\pi}{2}\)] ∴ x ≠ \(\frac{-1-\sqrt{17}}{4}\)) |
|