Saved Bookmarks
| 1. |
Solve the differential equation `x y(dx)/(y dx)=(1+y^2)/(1+x^2)(1+x+x^2)` |
|
Answer» We have `(ydy)/(1+y^(2))=(1+x+x^(2))/(x(1+x^(2))`dx Integrating both sides, `int(ydy)/(1+y^(2))=int(1/x+1/(1+x^(2)))dx` `therefore 1/2log_(e)(1+y^(2))=log_(e)x+tan^(-1)x+log_(e)C` `log_(e)sqrt(1+y^(2))/(cx)=tan^(-1)x` `rArr sqrt(1+y^(2))=cxe^(tan^(-1)x)` |
|