Saved Bookmarks
| 1. |
Solve the differential equation dy/dx + y sec x = tan x, 0 ≤ x < π/2. |
|
Answer» P = secx Q = tan x IF = e∫sec xdx = elog(sec x + tan x) = secx + tanx y x IF = ∫Q x IF y (sec + tan x) = ∫(sec x + tan x) tan x.dx = ∫sec x.tan x + ∫ tan2 x.dx = secx + ∫(sec2 x - 1) dx y(sec x + tan x) = sec x + tan x - x + c |
|