| 1. |
Solve the differential equation \(3{x^2}dy + \left( {{y^2} - 2xy} \right)dx = 0\)1. \(\frac{{x + y}}{y} = c{e^{\frac{{ - 1}}{3}}}\)2. \(\frac{y}{{x + y}} = c{x^{\frac{{ - 1}}{3}}}\)3. \(\frac{{x + y}}{y} = c{e^{\frac{1}{3}}}\)4. \(y\left( {x + y} \right) = c{x^{\frac{5}{3}}}\) |
|
Answer» Correct Answer - Option 2 : \(\frac{y}{{x + y}} = c{x^{\frac{{ - 1}}{3}}}\) Concept: Homogenous equation are of the form \(\frac{{dy}}{{dx}} = \frac{{f\left( {x,y} \right)}}{{\emptyset \left( {x,y} \right)}}\) Where f(x, y) and ∅(x, y) Homogenous functions of the same degree in x and y. To solve a homogenous equation
Calculation: \(3{x^2}dy + \left( {{y^2} - 2xy} \right)dx = 0\) \(\frac{{dy}}{{dx}} = \frac{{2xy - {y^2}}}{{3{x^2}}}\) Put y = vx, then \(\frac{{dy}}{{dx}} = v + x\frac{{dv}}{{dx}}\) \(v + x\frac{{dv}}{{dx}} = \frac{{2v{x^2} - {v^2}{x^2}}}{{3{x^2}}}\) \(x\frac{{dv}}{{dx}} = \frac{{ - v - {v^2}}}{3}\) \(\frac{{dv}}{{{v^2} + v}} = \frac{{ - dx}}{{3x}}\) \(\left( {\frac{1}{v} - \frac{1}{{v + 1}}} \right)dv = \frac{{ - dx}}{{3x}}\) By integrating both sides we get \(\smallint \left( {\frac{1}{v} - \frac{1}{{v + 1}}} \right)dv = \smallint \frac{{ - dx}}{{3x}}\) \(\ln v - \ln \left( {v + 1} \right) = \frac{{ - 1}}{3}\ln x + \ln c\) \(\ln \frac{v}{{v + 1}} = \ln \left( {c{x^{\frac{{ - 1}}{3}}}} \right)\) \(\frac{v}{{v + 1}} = c{x^{\frac{{ - 1}}{3}}}\) Put v = y/x in the above equation we get \(\frac{{\frac{y}{x}}}{{\frac{y}{x} + 1}} = c{x^{\frac{{ - 1}}{3}}}\) \(\frac{y}{{x + y}} = c{x^{\frac{{ - 1}}{3}}}\) |
|