Saved Bookmarks
| 1. |
Solve the differential equation: `(1+x^2) dy/dx + y = tan^-1 x` |
|
Answer» `(dy)/(dx)+y/(1+x^2)=tan^(-1)x/(1+x^2)` P=`1/(1+x^2)` Q=`(tan^(-1)x)/(1+x^2)` `y*IF=int(IF)*Q dx` `y*e^(tan^(-1)x)=int(e^(tan^(-1)x))/(1+x^2) dx` let`tan^(-1)x=t` `y*e^t=(t-1)e^t+c` `y=(tan^(-1)x-1)+ce^(-tan^(-1)x)`. |
|