1.

Solve `sin^(-1). (14)/(|x|) + sin^(-1).(2 sqrt15)/(|x|) = (pi)/(2)`

Answer» `sin^(-1).(14)/(|x|) + sin^(-1). (2sqrt15)/(|x|) = (pi)/(2)`
`rArr sin^(-1).(14)/(|x|) = (pi)/(2) - sin^(-1).(2 sqrt15)/(|x|)`
`= cos^(-1).(2 sqrt15)/(|x|) = sin^(-1)sqrt(1 - ((2 sqrt15)/(|x|))^(2))`
`rArr ((14)/(|x|))^(2) = 1 - ((2 sqrt15)/(|x|))^(2)`
`rArr |x| = 16 " or " x = +- 16`, which satisfies `|x| ge 2 sqrt15`


Discussion

No Comment Found