Saved Bookmarks
| 1. |
Solve `log(dy)/(dx)=4x-2y-2`, given that `y=1`when `x=1.` |
|
Answer» `log_(e)(dy)/(dx)=4x-2y-2` `rArr (dy)/(dx)=e^(4x-2y-2)` `rArr e^(2y+2)dy=e^(4x)dx` Integrating both sides, `inte^(2y+2)dy=e^(4x)dx` `rArr e^(2y_2)/(2)=e^(4x)/(4)+C` Putting x=1 and y=1, we get `e^(4)/2=e^(4)/4+C` or `c=e^(4)/4` So, particular solution is `(e^(2y)+2)/(2) = (e^(4x)+e^(4))/(4)` or `2(e^(2y+2))=e^(4x)+e^(4)` |
|