1.

Solve for x and y:\(\frac{x}a+\frac{y}b=2\),ax – by = (a2 – b2)

Answer»

The given equations are: 

x/a + y/b = 2 

⇒ bx+ay/ab = 2 [Taking LCM] 

⇒bx + ay = 2ab …….(i) 

Again, ax – by = (a2 – b2) …..(ii) 

On multiplying (i) by b and (ii) by a, we get:

b2x + bay = 2ab2 ……..(iii) 

a2x – bay = a(a2 – b2) …….(iv) 

On adding (iii) from (iv), we get: 

(b2 + a2)x = 2a2b + a(a2 – b2

⇒(b2 + a2)x = 2ab2 + a3 – ab2 

⇒(b2 + a2)x = ab2 + a3 

⇒(b2 + a2)x = a(b2 + a2

⇒x = a(b2+ a2) (b2+ b2) = a 

On substituting x = a in (i), we get: 

ba + ay = 2ab 

⇒ ay = ab 

⇒ y = b 

Hence, the solution is x = a and y = b.



Discussion

No Comment Found