Saved Bookmarks
| 1. |
Solve each of the following initial value problems:(i) y'+y=ex, y0=12(ii) xdydx-y=log x, y1=0(iii) dydx+2y=e-2x sin x, y0=0(iv) xdydx-y=x+1e-x, y1=0(v) 1+y2 dx+x-e-tan-1y dx=0, y0=0(vi) dydx+y tan x=2x+x2 tan x, y0=1(vii) xdydx+y=x cos x+sin x, yπ2=1(viii) dydx+y cot x=4x cosec x, yπ2=0(ix) dydx+2y tan x=sin x; y=0 when x=π3(x) dydx-3y cot x=sin 2x; y=2 when x=π2(xi)(xii) |
|
Answer» Solve each of the following initial value problems: (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) |
|