Saved Bookmarks
| 1. |
Solve: \( \cos ^{2}\left(x+\frac{\pi}{3}\right)=\sin ^{2}\left(\frac{-\pi}{3}-x\right) \) |
|
Answer» \(cos^2(x + \frac\pi3) = sin^2(\frac{-\pi}3-x)\) ⇒ \(cos^2(x + \frac\pi3) = sin^2(x + \frac\pi3)\) \((\because sin(-\theta)= -sin\theta)\) ⇒ \(cos^2(x + \frac\pi3)- sin^2(x + \frac \pi3) = 0\) ⇒ \(cos(2(x + \frac \pi3)) =0 = cos\frac\pi2\) \((\because cos^2\theta -sin^2\theta = cos2\theta)\) ⇒ \(2(x + \frac\pi3) = 2n\pi \pm \frac \pi 2\) ⇒ \(x + \frac \pi3 = n\pi \pm \frac \pi 4\) ⇒ \(x= n\pi \pm \frac\pi4 - \frac\pi3\) ⇒ \(x = n\pi + \frac \pi 4 - \frac\pi3 \; or\; n\pi - \frac\pi4 - \frac\pi3\) ⇒ \(x = n\pi - \frac \pi{12} \;or\; n\pi - \frac{7\pi}{12}, n\in Z\). |
|