Saved Bookmarks
| 1. |
Solubilirty product constants `(K_(sp))` of salts of types `MX, MX_(2)`, and `M_(3)X` at temperature T are `4.0xx10^(-8), 3.2xx10^(-14)`, and salts of temperature T is in the orderA. `MX_(2)gtM_(3)XgtMX`B. `M_(3)XgtMX_(2)gtMX`C. `MXgtM_(3)XgtMX_(2)`D. `MXgtMX_(2)gtM_(3)X` |
|
Answer» Correct Answer - C Let us assume that S is the solubility. `MX(s)hArr M^(+)underset(S)((aq.))+X^(-)underset(S)((aq.))` `K_(sp)=C_(M^(+))C_(X^(-))=(S)(S)` or `S=sqrt(K_(sp))=sqrt(4.0xx10^(-8))` `=2xx10^(-4)M` `MX_(2)(s)hArrM^(2+)underset(S)((aq.))+2X^(-)underset(2S)((aq.))` `K_(sp)=C_(M^(2+))C_(X^(-))^(2)=(S)(2S)^(2)=4S^(3)` or `S=((K_(sp))/(4))^(1//3)= ((3.2xx10^(-4))/(4))^(1//3)` `=2xx10^(-5)M` `M_(3)X(s)hArr underset(3S)(3M^(+)(aq.))+X^(3-)underset(S)((aq.))` `K_(sp)=C_(M^(+))^(3)C_(X^(3-))` `=(3S)^(3)(S)=27S^(4)` or `S=((K_(sp))/(27))^(1//4) = ((2.7xx10^(-15))/(27))^(1//4)` `=10^(-4)M` Thus, solubility order is `MXgt M_(3)XgtMX_(2)` |
|